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Abstract: We show the emergence of surface Non-Hermitian boundary terms that appear in an extended form of the 

quantum Ehrenfest theorem and are crucial in the calculation of optical matrix elements that govern the Optical 

Transitions in semiconductors, e.g. solar cells. Their inevitable existence, strongly related to the boundary conditions of 

a given quantum mechanical problem, is far-reaching in the sense that they play a dramatic role in the dynamics of 

solar absorption and the corresponding optical transitions that follow. Processes like optical transitions in localized and 

delocalized states and probabilities of intermolecular transitions can be investigated through this generalized off-

diagonal Ehrenfest theorem, employed in the present work in the form of various physical examples. As a byproduct, 

an explicit demonstration of bulk-boundary correspondence is shown, as the extended Ehrenfest theorem can be 

separated into bulk and surface contributions, each behaving separately from the other, but at the end collaborating to 

give the correct time-derivative of the desired optical element. An additional use is speculated in the case of topological 

materials. 
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I. INTRODUCTION 

The well-known Ehrenfest theorem of Quantum Mechanics describes the time-flow of the mean value of a vector 

operator B    through the following relation (the so-called Heisenberg equation): 

 
d

dt
 Ψ B    Ψ =  Ψ 

∂B   

∂t
 Ψ +

i

ℏ
 Ψ  H, B     Ψ  (1) 

where   Ψ   is any state   Ψ t    of the system, solution of the t-dependent Schrödinger equation, and  H, B     denotes the 

commutator of  B    with H. The above, if viewed as a continuity equation, states that the operator B    is conserved (its 

mean value is independent of time) if either B    is time-independent and commutes with H, or whenever  
∂B   

∂t
= −

i

ℏ
 H, B    , 

i.e. in the case that B    is an invariant operator [3]. This statement is not however generally true (in the sense that a local 

form of the above theorem may lack a divergence of a current density); indeed it has been explicitly proved in [1] that 

the following generalized Ehrenfest theorem is valid (with Bl  a certain Cartesian component of the vector operator B   ): 
 

d

dt
 Ψ Bl Ψ =  Ψ 

∂

∂t
Bl Ψ +

i

ℏ
 Ψ  H, Bl  Ψ −  J gen . dS   (2), 

with  J gen =
iℏ

2m
 ∇   Ψ∗BlΨ − Ψ∗∇    BlΨ  −

q

mc
A   Ψ∗BlΨ (3) 

the generalized current density of the quantity Bl , and A    is any magnetic vector potential present in the system. The last 

flux term across the system boundaries describes non-Hermitian effects that are emergent (and are strictly resulting 

from the boundary conditions). Although we have used notation for the surface flux of J gen  (proper for a 3D system), 

eq. (2) is also valid for any dimensionality (with the last term being a line integral of the component of J gen  

perpendicular to the displacement element dl  for 2D systems), or the difference of values of J gen  between two points 

(the ends of a 1D system). If we also define 

ρgen = Ψ∗BlΨ (4) 

a generalized density of Bl , then eq. (2) can also be written in differential form, namely:  

∇   . J gen +
∂  ρgen

∂t
= Ψ∗  

∂

∂t
Bl +

i

ℏ
 H, Bl  Ψ (5) 

Eq. (5) is actually a generalized local conservation law: the local contribution to  Ψ Bl Ψ  together with its flow, satisfy 

a continuity balance only if the source term that appears on the right hand side of (5) vanishes. The above extended 
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form of the Ehrenfest theorem is more complete and has potential consequences on many elementary Quantum 

Mechanical problems (see Ref. [1] for a few examples). Also, it resolves some previously noticed  Quantum 

Mechanical paradoxes (see Ref. [4], as well as Ref. [5] for an observation on the Hypervirial theorem). In what follows, 

we will develop a new methodology that extends even beyond the above Ehrenfest theorem (2) and applies mostly in 

the case of optical transitions by again involving the non-Hermitian boundary terms of eq. (2) and by generalizing even 

further to non-diagonal matrix elements (hence not only to the expectation values of (2)) and to left and right states that 

follow different Hamiltonians (but mutually related, their difference being an additive t-dependent perturbation term). 

Even more generally, our extended theorem can describe processes occurring in molecular orbitals as well as hoppings 

between different atoms or molecules. 

 

II. THE OFF-DIAGONAL EHRENFEST THEOREM 

We now generalize even further the above discussion: Suppose that we have a static Hamiltonian denoted by H0, given 

by the following expression 

H0 =
 p   +

e

c
A   0 r    

2

2m
+ V0 r  , 

with A   0 r   the magnetic vector potential and V0 r   a scalar potential energy with e being the electronic charge. At a 

given time t> 0, H0 transforms into another, time-dependent Hamiltonian H t  by some mechanism (i.e. solar photon 

absorption) that can be interpreted as adiabatic perturbation of some parameter or by adding to H0 an extra time-

dependent perturbation term: 

H t = H0 + H′ r , t  

where H′ r , t  is a perturbative term that can be introduced through the position and the momentum operators always in 

position representation (p  = −iℏ∇   r). We suppose that the perturbation occurs at a specific instance t=0, so that we can 

write H′ r , t = F r , t θ t . Let f r , t  and Ψ r , t  be the most general solutions of the following Schrödinger equations: 

H0f = iℏ
df

dt
  (6) and  H t Ψ = iℏ

dΨ

dt
 (7) 

In what follows, we will deal with cases of optical transitions between the states f and Ψ when an optical matrix 

element can be represented by the inner product  f Bl Ψ , with B    being generally a vector operator whose a certain 

Cartesian component is Bl; normally, it can be either the momentum or the position operator, but in  general it can be 

any operator. The time-evolution of the matrix element then reads: 
d

dt
 f Bl Ψ =  

∂

∂t
f Bl Ψ +  f 

∂

∂t
Bl Ψ +  f Bl 

∂

∂t
Ψ =  f 

∂

∂t
Bl Ψ +

i

ℏ
 H0f Bl Ψ −

i

ℏ
 f Bl H′Ψ , (8) 

where we have made use of the above Schrödinger equations (eq. (6) and (7)). Next, we add and subtract the term 
i

ℏ
 f Bl H

0Ψ  and make use of the fact that  f Bl H
0Ψ = − f  H0, Bl  Ψ +  f H0Bl Ψ  to find: 

d

dt
 f Bl Ψ =  f 

∂

∂t
Bl Ψ +

i

ℏ
 f  H0, Bl  Ψ −

i

ℏ
 f Bl H′Ψ , +

i

ℏ
 H0f Bl Ψ −

i

ℏ
 f H0Bl Ψ  (9) 

We now calculate the last two terms (which, generally, do not cancel out, due to the appearance of possible emergent 

non-Hermiticity of the kinetic energy of H0, as seen in [1]), namely: 

 H0f Bl Ψ −  f H0Bl Ψ = −
ℏ2

2m
 ∇2f Bl Ψ +

ℏ2

2m
 f ∇2Bl Ψ + 

iℏe

mc
 A   . ∇   f Bl Ψ +

iℏe

mc
 f A   . ∇   Bl Ψ  (10) 

so that, by using the Green’s theorem (in a very similar manner as was proved in [1]) we conclude to the following 

equation that rigorously describes the dynamical development of the optical element: 
d

dt
 f Bl Ψ =  f 

∂

∂t
Bl Ψ +

i

ℏ
 f  H0, Bl  Ψ −

i

ℏ
 f Bl H

′Ψ −  J gen
f,Ψ . dS  , (11) 

or, in differential form (using the fact that the above is valid for any volume element of the system), we obtain the 

following extension of the continuity equation: 

∇   . J gen
f,Ψ +

d  ρgen
f ,Ψ

dt
= f ∗  

∂

∂t
Bl +

i

ℏ
 H0, Bl −

i

ℏ
BlH

′ Ψ (12) 

with  J gen
f,Ψ =

iℏ

2m
 ∇   f ∗BlΨ − f ∗∇    BlΨ  +

e

mc
A   f ∗BlΨ (13) an off-diagonal generalization of flow density (which is an 

off-diagonal version of the previously mentioned J gen ) and ρgen
f,Ψ = f ∗BlΨ (14) an off-diagonal generalization of the 

density of the Hermitian operator Bl . Eq. (11) can be viewed as a generalization of eq. (2) (to f ≠ Ψ and to H′ ≠ 0). In 

the special case where Bl = 1, the identity operator, eq. (12) becomes: 

∇   . J gen
f,Ψ +

d ρgen
f ,Ψ

dt
= −

i

ℏ
f ∗H′Ψ   (15) with  ρgen

f,Ψ = f ∗Ψ   (16) 

A few comments are then worth making here: The off-diagonal generalized density is actually the probability 

amplitude to make a transition from the initial (single-) eigenstate f  to the final (linear combination) state Ψ. Because 

the system (or the perturbation) is time-dependent, the off-diagonal generalized current density plays the role of the 

transition probability flow, i.e. there is a finite chance of the particle being energetically transported to a final state due 

to the action of the perturbation. The right hand-side of eq. (15) generates the transition probability in a type of local 

continuity equation, and acts as a source term. Eq. (11) gives another insight to the problem: the time flow of  f Bl Ψ  
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is governed by bulk terms and a surface term (the surface integral of J gen
f,Ψ

) which gives one the opportunity to study a 

given problem from a dual perspective: the bulk physics and the surface physics, as we shall see below. It should be 

noted that eq. (12) is valid as written only if Ψ is a solution of (7) (with Hamiltonian H) and f is a solution of (6) (with 

Hamiltonian H0). At this point, to make sure that things are as clear as possible, we turn our attention to the solution Ψ; 

we reemphasize that this is a solution of H t Ψ = iℏ
dΨ

dt
, and is generally not connected with f, which is a solution of a 

different Schrödinger equation: H0f = iℏ
df

dt
. In cases of solar absorption, it is reasonable to assume that Ψ can be 

written as a linear combination on all f s-eigenstates of H0. Equation (12) is actually modified in form if one chooses to 

use - instead of Ψ- another eigenstate of  H0; Suppose that we are interested in the time evolution of the matrix element 

 fi Bl fn , with fi , fn  two orthogonal eigenstates of H0 and Bl  is either the momentum or the position operator. In this 

case, after following a similar methodology as the one used to derive eq. (12), we arrive at the following generalized 

continuity equation: 

∇   . J gen
i,n +

d  ρgen
i,n

dt
= fi

∗  
∂

∂t
Bl +

i

ℏ
 H0, Bl  fn   with  ρgen

i,n = e
i

ℏ
 εi  −εn   tfi

∗fn    (17) 

which lacks  - if compared to (12) -  the perturbation term. This equation will be used quite often in what follows. 

 

III.  APPLICATION OF THE GENERALIZED EHRENFEST THEOREM IN CASES WITH FERMI 

GOLDEN RULE 

To estimate the probability of an optical transition from the initial Quantum Mechanical state fl r   (a single 

eigenfunction of H0, solution of H0fl = εlfl), in which case f = fl r  e−
i

ℏ
εl t

, to the final state Ψ =  an t fn r  e−
i

ℏ
εn t

n  (a 

general solution of HΨ = iℏ
∂Ψ

∂t
) that can always be written as a linear combination of all fn r   states of H0 with time 

dependent coefficients an t , we must calculate the time evolution of  f 1 Ψ . Using eq. (15) we find: 
d f∗ r  ,t Ψ r  ,t   

dt
= −∇   . J gen

f,Ψ −
i

ℏ
 e

i

ℏ
 εl  −εn   t

n an t H′l,n  (18) 

 

with H′l,n = fl
∗H′fn   and the ∇   . J gen

f,Ψ
 term can be determined as follows: From eq. (13) and the definitions of f and Ψ we 

have that (always for Bl  = identity operator and assuming that no vector potentials are present, as typical in solar cells) 

J gen
f,Ψ =

iℏ

2m
 ∇   f ∗Ψ − f ∗∇   Ψ =

iℏ

2m
 an t 

n

e
i

ℏ
 εl−εn  t  ∇   fl

∗ r  fn r  − fl
∗ r  ∇   fn r   =  an t 

n

J gen
l,n

 

with  J gen
l,n =

iℏ

2m
e

i

ℏ
 εl−εn  t  ∇   fl

∗ r  fn r  − fl
∗ r  ∇   fn r   . Now, according to eq. (17), and the fact that both fl  and fn  are 

eigenfunctions of H0, we have that this generalized current obeys ∇   . J gen
l,n +

d ρgen
l,n

dt
= 0, with ρgen

l,n = e
i

ℏ
 εl −εn  tfl

∗ r  fn r   

so that 

∇   . J gen
f,Ψ =  an t n ∇   . J gen

l,n = −  an t n

d ρgen
l,n

dt
= −

i

ℏ
 an t n  εl − εn e

i

ℏ
 εl −εn  tfl

∗ r  fn r   (19) 

with εn  the energy levels of the unperturbed Hamiltonian H0. Integrating then eq. (18) over the whole volume of the 

system, we get: 
d  d3rf∗Ψ  

dt
=

dal t  

dt
, and 

dal  t  

dt
= −

i

ℏ
 an t e

i

ℏ
 εl  −εn   t

n   εn − εl  d3rfl
∗fn r   +  H′ l,n = −

i

ℏ
 an t e

i

ℏ
 εl  −εn   t

n  H′ l,n  (20) 

 

Due to the orthonormality of fl r   and fn r  . We observe that in this case, where the state Ψ can be written as a linear 

combination of all independent eigenstates of the unperturbed Hamiltonian the integral of the ∇   . J gen  term vanishes. As 

a result, in the Bl = 1 case, the probability amplitude is not influenced by the appearance of boundary terms, but in a 

more general case, where the initial and final states may not be orthogonal (e.g. transitions between different  molecular 

orbitals), boundary terms will indeed be needed. The result (20) is the standard textbook result that leads to Fermi 

Golden Rule (after the usual approximations on the coefficients are made).  

which lacks  - if compared to (12) -  the perturbation term. This equation will be used quite often in what follows. 

 

IV. APPLICATION IN OPTICAL TRANSITIONS 

The off-diagonal non-Hermitian boundary terms may have potential consequences on the optical properties of 

semiconducting systems if one appropriately applies the extended Ehrenfest theorem for the optical matrix elements. In 

what follows, we will make use of eqs. (11), (12) and (17) to some quantum mechanical problems that are affected by a 

time-dependent perturbation (i.e. a solar photon absorption) and calculate the dipole matrix element and the momentum 

matrix element (in case that we have a scalar or a vector potential to describe the interaction of matter with the electric 

field of light). The interaction term H’ will be set to zero, because we will only be interested in single eigenstates of the  

unperturbed Hamiltonian H0 as the initial and final states. Let us start from the time-dependence of the transition dipole 
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matrix element  f r  Ψ  with f r , t = fi r  e−
i

ℏ
εi t

 and Ψ r , t = fn r  e−
i

ℏ
εn t

, both solutions of H0. The usefulness of our 

results is demonstrated in the following way: For single eigenstates, and time-independent operators, we have that the 

following relation holds: 
d 

dt
 f Bl Ψ = iωi,n fi Bl fn  (21)  with  ωi,n =

εi−εn

ħ
 

 

i.e. the matrix element between single eigenkets of any physical observable is proportional to its time-derivative. In 

contrast, when the diagonal matrix element is used instead, the time derivative gives a null result, as indeed expected, 

because the time-phase factor of the single eigenkets is eliminated. This result gives one the potential to express the 

optical transition element in terms of its time derivative (simplifying, as we shall see, in many cases the calculation 

load). We proceed with three important examples. 

 

A.   Free particle in 1 and 2 dimensions 

It is convenient to first present a simple example in 2D: Consider a particle in the interior of a 2D rectangle (Lx × Ly) 

with vanishing vector and scalar potentials  A   , V = 0 and periodic boundary conditions along the sides Lx  and Ly  : In 

this free particle case, the normalized eigenfunctions of the Hamiltonian are: 

f
k   
 r  =

1

 Lx Ly
eik   .r  , (22) with kx = 2π

nx

Lx
, ky = 2π

ny

Ly
 (23), nx , ny = 0, ±1, ±2, …. with eigenenergies: εk

0 =
ℏ2k2

2m
 (24) 

 

Let us then consider the x-component of the position as our input operator in eq. (17) to find (with f =   k  ′   and Ψ =   k     
being two different, orthonormal eigenfunctions):  

d 

dt
 x 

k   ,k   ′ = iωk   ,k   ′
 x 

k   ,k   ′ =
 px  

k   ,k   ′

m
 −  J gen

k   ,k   ′

⊥
dl, (25) 

with  px k   ,k   ′ = 0 and the line integral along the line boundary is the integral of the transverse component of  J gen
k   ,k   ′

 

(J gen
k   ,k   ′

⊥
)  to the edges of the rectangle, namely: 

 J gen
k   ,k   ′

⊥
dl =  J y

k   ,k   ′ x, 0 dx
Lx

0
−  J y

k   ,k   ′ x, Ly dx
Lx

0
−  J x

k   ,k   ′ 0, y dy
Ly

0
+  J x

k   ,k   ′ Lx , y dy
Ly

0
=

ℏ

2m
e

iω
k   ,k   ′

t 1

Lx Ly
 ky

′ +

ky0Lxxeikx−kx′.xdx−ℏ2meiωk,k′t1LxLyky′+ky0Lxxeikx−kx′.xdx−0+0=0  (26) 

where we used  J x
k   ,k   ′ x, y =

iℏ

2m
e

iω
k   ,k   ′

t
 

∂f
k   ′
∗

∂x
xfk   − f

k   ′
∗ fk   − xf

k   ′
∗ ∂f

k   

∂x
 ,  J y

k   ,k   ′ x, y =
iℏ

2m
e

iω
k   ,k   ′

t
 

∂f
k   ′
∗

∂y
xfk   − xf

k   ′
∗ ∂f

k   

∂y
  and 

ωk   ,k   ′ =
εk ′

0 −εk
0

ℏ
. 

If we put everything into eq. (25), the final result seems to be: 
d 

dt
 x 

k   ,k   ′  = 0, for k ≠ k′ (27) 

To independently check the validity of this result, we straightforwardly proceed with the verification of eq. (27) 

(always for k  ≠ k  ′): 

d 

dt
 x 

k   ,k   ′ =
iω

k   ,k   ′

LxLy

e
iω

k   ,k   ′
t
 dx

Lx

0

xei kx −kx
′  x  dy

Ly

0

ei ky −ky
′  y =

iω
k   ,k   ′

Lx Ly

e
iω

k   ,k   ′
t
 dx

Lx

0

xei kx −kx
′  x  

ei ky −ky
′  Ly − 1

i ky − ky
′  

 = 0 

(the last vanishing due to eq. (23)). In two dimensions we get a null result, but it is interesting to note that if we had 

carried out our calculations in the case of 1D (an electron in a linear length Lx , with periodic boundary conditions), 

namely: 

fk x =
1

 Lx
eikx , with kx = 2π

nx

Lx
, and εk

0 =
ℏ2k2

2m
 we would have found that (after applying the integrated version of eq. 

(17)): 
d 

dt
 x k,k′ =

 px k,k′

m
 −  J gen

k,k′  
0

Lx
 

with  px k,k ′ = 0 and  J gen
k,k′  

0

Lx
=

iℏ

2mLx
e

iω
k   ,k   ′

t  ei k−k′ x −1 − i k + k′ x  
0

Lx
=

ℏπ

mLx
e

iω
k   ,k   ′

t
 nx + nx ′   

so that 
d 

dt
 x k,k′ = −

ℏπ

mLx
 nx + nx ′ e

iω
k   ,k   ′

t
, hence a non-vanishing result. 

This can again be verified for the case of  k ≠ k′, by straightforwardly calculating the time derivative, namely: 

d 

dt
 x k,k ′ =  

1

Lx
e

iω
k   ,k   ′

t
 dx

Lx

0
xei k−k′ x =  

i

Lx
ωk   ,k   ′e

iω
k   ,k   ′

t
 dx

Lx

0
xei k−k′ x =

i

Lx
ωk   ,k   ′e

iω
k   ,k   ′

t
x  

ei k−k ′ x

i k−k′ 
 

0

Lx

=

1

 k−k′ 
ω

k   ,k   ′
e

iω
k   ,k   ′

t
= −

ℏπ

mL
 nx + nx ′ e

iω
k   ,k   ′

t
 (28) 
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One can also add here the expected 
d 

dt
 x k,k ′ = 0 in the case of k = k′ (as the expectation value in a single-eigenstate is 

indeed t-independent, meaning that the time-derivative will result to zero) that actually motivated the discussion in [1] 

and was developed there in full detail.  

We notice from the above example that the dimensionality of a given problem is very important because the extra 

spatial degrees of freedom may affect the photon absorbance differently; for the previous 1D case, transition 

probabilities between different wave-number states are possible, as given by eq. (28). In the 2D case however, this is 

not always possible (as predicted by eq. (27)) for a linearly polarized electric field. Transitions are possible, however, 

in the case of circularly polarized (or any directionally time-varying) electric field, in which case the above electric 

dipole element may not vanish. Similar conclusions can be also drawn for the 3D case. 

 

B.  Quantum bouncing ball  

After the previous example, viewed as a preliminary step, we now turn our attention to the off-diagonal momentum 

optical matrix element  Π    i,n , with Π   = p  +
e

c
A    the kinetic momentum, in cases where the perturbation enters the 

Hamiltonian as a time-dependent vector potential. Using for simplicity a specific component of the vector operator Π   , 

i.e.  Bl = Πx = px +
e

c
Ax  (and for the case H′ = 0) in eq. (17) we arrive at the following equation:  

∇   . J gen
f,Ψ +

d ρgen
f ,Ψ

dt
= f ∗  −

eBz

mc
Πy +

eBy

mc
Πz −

∂V

∂x
 Ψ (29) 

Then, for H′ = 0, and ωi = eBi/mc (i.e. f and Ψ are regarded as two distinct eigenfunctions (hence, there is no need of 

including H’, as explained before) of the same Hamiltonian), and by using eq. (21) we have: 

 

d ρgen
f ,Ψ

dt
=

d 

dt
 ei

 ε f −εψ  t

ℏ f ∗ r  ΠxΨ r   = iωf ,ψρgen
f,Ψ  r   (30) 

with ωf,ψ =
 εf −εψ  

ℏ
, from which we obtain that:  

 

iωf,ψ  Πx f,ψ = −ωz Πy f,ψ + ωy Πz f,ψ −  
∂V

∂x
 f,ψ −  J gen

f,Ψ  Πx . dS   (31) 

 

with J gen
f,Ψ  Πx  given by eq. (13). In [2], the authors use the Ehrenfest theorem to calculate  Πx f,Ψ  neglecting the 

boundary terms, which terms however can in principle be very important and can contribute equally to the overall 

result. The above equation (31) has the advantage that, it can relate the optical element  Πi f,Ψ  with the effective bulk 

force acting on the particle and with a boundary term (a surface force) as a result of the interaction with the 

electromagnetic field.  

 

To underline the important physical consequences of the new non-Hermitian terms, we will calculate the last term 

appearing in (31) for the case of an electron in a triangular well (described by a homogeneous electric field E) in 1D 

without any magnetic fields or vector potentials present. In this case, the wavefunctions are represented by the Airy 

functions: Ψn = CnAi  x −
εn

eE  /lf , with Cn  a normalization constant, Ai x  the Airy functions, εn  the energy levels 

and lf =  ℏ𝟐/2meE 
𝟏

𝟑 . Let f = Cn′Ai  x −
εn′

eE  /lf  and Ψ = CnAi  x −
εn

eE  /lf  two different, linearly 

independent solutions of the Schrödinger equation: 

 

Ψ′′ −
2meE

ℏ2  x −
εn

eE
 Ψ = 0 (32) 

 

The boundary condition at x=0 allows us to directly relate the energy eigenvalues εn  to the roots an  of the Airy 

function: 

 

Ai  −
εn

eElf
  = 0 ⇒ εn = −eElfan  with n=1,2…  (33) 

 

The generalized current density (eq. (13)) then reads: 

 

J gen
f,Ψ  px = eiωn ,n ′t

ℏ2

2m
Cn′

∗ Cn  Ai∗′  
x

lf
+ an′ Ai′  

x

lf
+ an − Ai∗  

x

lf
+ an′ Ai′′  

x

lf
+ an   (34) 

with ωn,n′ =
εn ′−εn

ℏ
. Because the Airy function Ai  

x

lf
+ an′  (and its derivative) at the asymptotic limit  x→∞ vanishes, 

and so does at x=0 (due to the infinite potential wall), we find that the only surviving term is the product of derivatives 

at x=0:  
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 J gen
f,Ψ  px  0

∞
= −

ℏ2

2mlf
2 Cn′

∗ Cneiωn ,n ′t Ai∗′ an′ Ai′ an   (35) 

 

By then using the normalization constant Cn = 1/  lfAi′ an   we find that: 

 J gen
f,Ψ  px  0

∞
= −

ℏ2

2mlf
3 eiωn ,n ′t  (36) 

 

Now, considering that  Πy n,n′ = 0,  Πz n,n′ = 0  (for a 1D case) and that  
∂V

∂x
= eE (the bulk force, which is 

homogeneous) it is immediate that  
∂V

∂x
 n.n′ = 0, due to the orthogonality of n and n′ (in eq. (31)) and we therefore note 

that  Πx n,n′ is proportional to the boundary term. On the other hand, we should point out that the full potential profile 

consists of both bulk and boundary terms, namely:  

 

V = limV0→∞ V0θ −x + eExθ x  (37) 

with θ x  the Heaviside step function, so that the full force equation should be related to 
∂V

∂x
= limV0→∞ V0δ x +

eEθ x , with δ x  the Dirac delta function. But, in doing so, there is a danger of double-counting the force contribution. 

What eq. (29) actually achieves, is to divide the problem into a bulk term and a surface term, which can be treated 

separately. To correctly calculate  
∂V

∂x
 n.n′ in eq. (29) we only need to use the bulk force element, eEθ x , which actually 

gives a null result. All surface terms (forces, momentum transfer etc.) are automatically built-in the last term of eq. 

(31), and no further calculations to determine the wave function are needed. Having this in mind, we conclude to: 

 
d  px  n ,n ′

dt
= iωf,ψ px n,n′ ⇒  px n,n′ =

−iℏ2

2mlf
3ωn ,n ′

eiωn ,n ′t  (38) 

 

and we can see that eqs (38) and (36) are indeed consistent with eq. (31) with the vanishing of  
∂V

∂x
 n.n′. It should also be 

noted that, in spite of the claim in [2], it is possible to find a way to analytically show the above result independently, 

with use of Airy function properties, and this is presented in Appendix 1. Furthermore, for completeness, we here carry 

out corresponding calculations, but now using the position operator in the integral version of eq. (17) as an input 

operator (for comparison purposes - assuming that the electromagnetic field is now coupled through a dipole moment 

interaction term), namely: 

 

iωn ′,n Ψn′ x Ψn =
1

m
 Ψn′ px  Ψn +  J gen

f,Ψ  
0

∞
, 

with  Ψn′ px Ψn =
−iℏ2

2mlf
3ωn ,n ′

eiωn ,n ′t  as given by eq. (38) and  

 J gen
f,Ψ  

0

∞
=

iℏ

2m
 Ψn′

′ xΨn − Ψn′ Ψn + xΨn
′   

0

∞
= 0 

So that we get the expected result (that demonstrates the duality between the choices of the momentum and position to 

describe the electromagnetic radiation), namely: 

 

 Ψn′ x Ψn =
ℏ2

2mlf
3ωn,n′

2 eiωn ,n ′t  

 

It is important to notice that in higher dimensionality cases, where line and surface integrals of the non-Hermitian terms 

appear, the boundary terms might not be zero; in these cases a more careful calculation is necessary (and this will be 

the focus of a future work). 

 

C.  Particle in an infinite potential well 

Let us finally see a simpler example from elementary Quantum Mechanics where the new surface terms proposed here 

might be important: Consider an electron in a quantum potential well with infinite walls and  A   , V = 0 inside the cell, 

with normalized eigenfunctions: 

Ψn =  
2

d
sin  

nπx

d
 e−

iεn t

ℏ  (39) 

and eigenenergies εn =
ℏ2π2n2

2md2  with n = 1,2.. and d is the quantum well’s length. We have that 
∂Ψ

∂x
=  

2

d

nπ

d
cos  

nπx

d
  

and 
∂2Ψ

∂x2 = − 
2

d
 

nπ

d
 

2

cos  
nπx

d
 , so that for l ≠ n we obtain: 
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J gen
l,n =

iℏ

2m
 ∇   Ψl

∗pxΨn − Ψl
∗∇    pxΨn  =

iℏ

2m
  −iℏ

2nπ

d2

lπ

d
cos  

nπx

d
 cos  

lπx

d
   

0

d

eiω l ,n t = ℏ2 nlπ2

md3
 cos nπ cos lπ −

1eiωl,nt (40) 

 

so that by using the integral form of eq. (17) we find that (after using  
𝜕𝑉

𝜕𝑥
= 0): 

𝑑  

𝑑𝑡
 𝑝𝑥  𝑙 ,𝑛 = −ℏ2 𝑛𝑙𝜋2

𝑚𝑑3
 𝑐𝑜𝑠 𝑛𝜋 𝑐𝑜𝑠 𝑙𝜋 − 1 𝑒𝑖𝜔 𝑙 ,𝑛 𝑡(41) 

In (41), only terms that satisfy the condition n-l =odd survive, and they give: 
𝑑  

𝑑𝑡
 𝑝 𝑙 ,𝑛 = −2𝑖ℏ2 𝑛𝑙 𝜋2

𝑚𝑑3𝜔 𝑙 ,𝑛
𝑒𝑖𝜔 𝑙 ,𝑛 𝑡  (42) 

For the case 𝑙 = 𝑛, we also have that 𝐽 𝑔𝑒𝑛
𝑙 ,𝑙 = 0 and 

𝑑  

𝑑𝑡
 𝑝 𝑙 ,𝑙 = 0. 

 

We therefore conclude that the non-Hermitian terms are of vital importance when it comes to calculate the time 

dependence of optical matrix elements, and should always be included. Generally, we can see from eq. (31) that, if the 

surface term were indeed zero, we could write directly a certain component of the optical matrix element  𝛱𝑖 𝑓 ,𝜓  as a 

function of the ‘effective force’,  𝛻  𝑉 𝑓 ,𝜓  and simplify the calculations as already been done in [2]. However, this is not 

always the case, as the non-Hermitian terms appear as a consequence of a generalized conservation theorem. This is 

demonstrated more clearly in the comments that follow. 

                    If, for example, the momentum is chosen as an input operator in eq. (31), there is a bulk force contribution 

from the gradient of the potential and a surface contribution from the non-Hermitian term. While the potential gradient 

refers to the (off-diagonal) bulk force acting on the particle, the surface term incorporates the surface force directly 

(which is generally proportional to the product of the derivatives of the two transverse wave functions-as will be 

demonstrated below). At this point, to clear things out, we will present a simple example: Consider once again the 

simple case of an electron in a 1D quantum well of length L (with no-vector potential) and the equation (31) in 1D: 

 

𝑖𝜔𝑓 ,𝜓  𝑝𝑥 𝑓 ,𝜓 = −  
𝜕𝑉

𝜕𝑥
 𝑓 ,𝜓 −  𝐽 𝑔𝑒𝑛

𝑓 ,𝛹  𝑝𝑥  
0

𝐿
 (43) 

with 𝐽 𝑔𝑒𝑛
𝑓 ,𝛹  𝑝𝑥 =

𝑖ℏ

2𝑚
 

𝜕

𝜕𝑥
𝑓∗𝑝𝑥𝛹 − 𝑓∗ 𝜕

𝜕𝑥
 𝑝𝑥𝛹  =

ℏ2

2𝑚
 

𝜕

𝜕𝑥
𝑓∗ 𝜕

𝜕𝑥
𝛹 − 𝑓∗ 𝜕2

𝜕𝑥2 𝛹  (44). In this case, the potential profile 

reads: 

𝑉 = 𝑙𝑖𝑚𝑉0→∞ 𝑉0 𝜃 −𝑥 + 𝜃 𝑥 − 𝐿   (45) 

The gradient, 
𝜕𝑉

𝜕𝑥
 reads: 

𝜕𝑉

𝜕𝑥
= 𝑙𝑖𝑚𝑉0→∞ 𝑉0 𝛿 −𝑥 + 𝛿 𝑥 − 𝐿   (𝟒𝟔). This is the surface force operator acting on the 

particle, while the bulk force operator is obviously 
𝜕𝑉

𝜕𝑥
= 0. Eq. (43) can then be utilized in a twofold manner: If one 

chooses to use the boundary terms as in eq. (43), then, because the surface force information is already included in 

 𝐽 𝑔𝑒𝑛
𝑓 ,𝛹  𝑝𝑥  

0

𝐿
 , (which is actually proportional to the product of the derivatives of the wavefunctions, because the second 

term in eq. (44) vanishes, and only the first term survives) and  
𝜕𝑉

𝜕𝑥
 must only be the bulk force which is zero.  

On the other hand, if one wishes to neglect the boundary terms in (43), then the full potential profile (eq. (46)) must be 

used. Extra care is therefore needed in order to avoid double counting of the force contribution to  𝑝𝑥 𝑓 ,𝜓 . As a 

byproduct we note that, if in a problem there are periodic boundary conditions, then, the full version of eq. (43) must be 

used, because of the difficulty in obtaining the exact form of the surface potential.  

 

Finally, we should re-emphasize that the generality of our results permits one to conduct calculations beyond the 

stationary states and consider delocalized states or even states that belong to a different Hamiltonians, which is why 

states f and Ψ are left intentionally unspecified. 

 

V.  CONCLUSION 

We have shown an extended form of the Ehrenfest theorem that applies in case of calculations of optical matrix 

elements. This generalized form, including non-Hermitian boundary terms defines a continuity equation describing the 

flow of a specific optical matrix element  𝑓𝑙 𝐵𝑙  𝑓𝑛 , with 𝐵𝑙  a Hermitian operator of the system. The generalized 

Ehrenfest theorem has been applied to some elementary quantum mechanical problems demonstrating the necessity of 

inclusion of the non-Hermitian terms. Dimensionality and given boundary conditions are crucial in the determination of 

these boundary currents, which completely separate the problem from its bulk response. For example, in some 

problems, the quantum force originates completely from the boundaries, while, in other problems, both the boundary 

and the surface play equivalent roles. It can furthermore be speculated that a more careful consideration of this 

separation (into a bulk and a surface contribution) may reflect the recently observed bulk-boundary correspondence that 

is found in Quantum Hall systems [6] and even in more general topological materials, such as Topological Insulators 

[7,8] or 3D Dirac and Weyl semimetals [9]. 
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APPENDIX 

We here prove the result (38) analytically: 

 

 𝑝𝑥 𝑛 ,𝑛 ′ = −𝑖ℏ  𝑑𝑥
∞

0

𝛹𝑛 ′
∗

𝜕𝛹𝑛

𝜕𝑥
=

−𝑖ℏ2

2𝑚𝑙𝑓
3𝜔𝑛 ,𝑛 ′

𝑒𝑖𝜔𝑛 ,𝑛 ′𝑡  

Let 𝛹𝑛 ′
∗ = 𝐶𝑛 ′𝐴𝑖  𝑥 −

𝜀𝑛 ′
𝑒𝐸  /𝑙𝑓 𝑒

𝑖𝜀𝑛 ′𝑡

ℏ  and 𝛹𝑛
∗ = 𝐶𝑛𝐴𝑖  𝑥 −

𝜀𝑛
𝑒𝐸  /𝑙𝑓  𝑒−

𝑖𝜀𝑛 𝑡

ℏ   be two orthogonal solutions of the 

Schrodinger equation: 

 

𝛹𝑛 ′
′′ −

2𝑚𝑒𝐸

ℏ2  𝑥 −
𝜀𝑛 ′

𝑒𝐸
 𝛹𝑛 ′ = 0  (A1) 

 

𝛹𝑛
′′ −

2𝑚𝑒𝐸

ℏ2  𝑥 −
𝜀𝑛

𝑒𝐸
 𝛹𝑛 = 0  (A2) 

 

Multiply (A1) with 𝛹𝑛
′  and (A2) with 𝛹𝑛 ′

′ , and add them by parts to find: 

 

𝛹𝑛 ′
′′ 𝛹𝑛

′ + 𝛹𝑛
′′𝛹𝑛 ′

′ −
2𝑚𝑒𝐸

ℏ2  𝑥𝛹𝑛 ′𝛹𝑛
′ −

𝜀𝑛 ′

𝑒𝐸
𝛹𝑛 ′𝛹𝑛

′ + 𝑥𝛹𝑛𝛹𝑛 ′
′ −

𝜀𝑛

𝑒𝐸
𝛹𝑛𝛹𝑛 ′

′  = 0 (A3) 

 

Integrate eq. (A3) with respect to x: 

 

 𝑑𝑥
∞

0
 𝛹𝑛 ′

′′ 𝛹𝑛
′ + 𝛹𝑛

′′𝛹𝑛 ′
′ −

2𝑚𝑒𝐸

ℏ2  𝑥𝛹𝑛 ′𝛹𝑛
′ −

𝜀𝑛 ′

𝑒𝐸
𝛹𝑛 ′𝛹𝑛

′ + 𝑥𝛹𝑛𝛹𝑛 ′
′ −

𝜀𝑛

𝑒𝐸
𝛹𝑛𝛹𝑛 ′

′   = 0 (A4) 

 

We will now make use of the properties of the Airy functions to simplify the results: 

 

 𝑑𝑥
∞

0
𝛹𝑛 ′

′′ 𝛹𝑛
′ =  𝛹𝑛 ′

′ 𝛹𝑛
′  

0

∞
−  𝑑𝑥

∞

0
𝛹𝑛 ′

′ 𝛹𝑛
′′ (A5) 

 

 𝑑𝑥
∞

0
𝑥𝛹𝑛 ′𝛹𝑛

′ =  𝑥𝛹𝑛 ′𝛹𝑛  0
∞ −  𝑑𝑥

∞

0
𝑥𝛹𝑛𝛹

𝑛 ′
′ = −  𝑑𝑥

∞

0
𝑥𝛹𝑛𝛹

𝑛 ′
′  (A6) 

 

 𝑑𝑥
∞

0
𝛹𝑛 ′𝛹𝑛

′ = −  𝑑𝑥
∞

0
𝛹𝑛𝛹𝑛 ′

′  (A7) 

 

Substituting (A5), (A6) and (A7) into (A4) we conclude to: 

 
 𝛹𝑛 ′

′ 𝛹𝑛
′  

0

∞
−

2𝑚

ℏ2  𝜀𝑛 − 𝜀𝑛 ′  𝑑𝑥
∞

0
 𝛹𝑛 ′𝛹𝑛

′  = 0 (A8) 

 

Because  𝑝𝑥  𝑛 ,𝑛 ′ = −𝑖ℏ  𝑑𝑥
∞

0
𝛹𝑛 ′

∗ 𝜕𝛹𝑛

𝜕𝑥
 we get:  −𝑖ℏ  𝑑𝑥

∞

0
 𝛹𝑛 ′𝛹𝑛

′  = −𝑖
ℏ2  𝛹𝑛 ′

′ 𝛹𝑛
′  

0

∞

2𝑚𝜔𝑛 ,𝑛 ′
. Note that in the asymptotic limit 

x→ ∞, both the wavefunction and its derivative vanish, so that  Ψn ′
′ Ψn

′  
0

∞
= −Ψn ′

′  0 Ψn
′  0 = −

1

lf
3 and therefore 

 px n,n′ = −i
ℏ2

2mωn ,n ′lf
3  

eiωn ,n ′t  (A9) 

which coincides with eq. (38) that has been derived with  much less effort in the main text, with use of  the non-

Hermitian boundary terms. 
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